ARTICOLI PEER-REVIEWED

SU RIVISTE SCIENTIFICHE INTERNAZIONALI

D2.2.3.JPG

Flexible Workflow for Determining Critical Hazard and Exposure Scenarios for Assessing SLODs Risk in Urban Built Environments

Urban Built Environments (UBE) are increasingly prone to SLow-Onset Disasters (SLODs) such as air pollution and heatwaves. The effectiveness of sustainable risk-mitigation solutions for the exposed individuals’ health should be defined by considering the effective scenarios in which emergency conditions can appear. Combining environmental (including climatic) conditions and exposed users’ presence and behaviors is a paramount task to support decision-makers in risk assessment. A clear definition of input scenarios and related critical conditions to be analyzed is needed, especially while applying simulation-based approaches. This work provides a methodology to fill this gap, based on hazard and exposure peaks identification. Quick and remote data-collection is adopted to speed up the process and promote the method application by low-trained specialists. Results firstly trace critical conditions by overlapping air pollution and heatwaves occurrence in the UBE. Exposure peaks (identified by remote analyses on the intended use of UBEs) are then merged to retrieve critical conditions due to the presence of the individuals over time and UBE spaces. The application to a significant case study (UBE in Milan, Italy) demonstrates the approach capabilities to identify key input scenarios for future human behavior simulation activities from a user-centered approach.

1280px-Open_Access_PLoS.svg.png

Main WP of reference

Journal

Year

WP 2 - T2.2 (SLOD)

Sustainability (MDPI)

2021

D2.2_edited.jpg

A New Approach to Assess the Built Environment Risk under the Conjunct Effect of Critical Slow Onset Disasters: A Case Study in Milan, Italy

Citizens in dense built environments are susceptible to the simultaneous occurrence of Slow Onset Disaster (SLOD) events, being particularly prone to increasing temperatures and air pollution. Previous research works have assessed these events’ arousal separately and have identified when their intensity is critical. However, few have integrated their analysis, possibly limited by the quality and granularity of available data, the accessibility and distribution of sensors, and measurements not emulating the surroundings of a pedestrian. Thus, this work performed an outdoor meso-scale multi-hazard-based risk analysis to study the aggregated effects of the SLODs mentioned above. The study was carried out to narrow down the time-frames within 2019 in which these two events could have affected citizens’ health the most. A weighted fuzzy logic was applied to superimpose climatic (temperature, humidity, wind speed, and solar irradiance) and air quality (particulate matter, ozone, and ammonium) distress (true risk) on an hourly basis, allocated using set healthy and comfortable ranges for a specific dense urban climate context within Milan (Italy), processing data from Milano via Juvara station. The findings show that sensitive groups were at risk of high temperature and pollution separately during 26% and 29% of summer and mid-season hours, respectively; while multi-hazard risk would arise during 10.93% of summer and mid-season hours, concentrated mainly between 14:00 and 20:00.

1280px-Open_Access_PLoS.svg.png

Main WP of reference

Journal

Year

WP 2 - T2.2 (SLOD)

Applied Sciences (MDPI)

2021

D1.3_edited.jpg

Risk Reduction Strategies against Terrorist Acts in Urban Built Environments: Towards Sustainable and Human-Centred Challenges

Terrorist impacts have been increasing over time in many countries, being one of the most significant threats for the Built Environment (BE), intended as a network of open spaces (streets, squares) and facing buildings, and their users. Such risk is affected by a combination of strategic functions and crowd conditions. This work traces, for the first time, the state-of-the-art consolidated Risk Mitigation and Reduction Strategies (RMRSs). Solid RMRS regulatory frameworks from all over the world are collected. The results show how classification criteria distinguish them by attack targets and typologies, effectiveness over time/space, and physical implementation versus management-based deployment. Nevertheless, these criteria seem to be too fragmented, failing in pursuing RMRSs selection in a holistic outlook. Thus, a new classification adopting the BE composing elements (physical elements, layout, access/surveillance systems, safety/security management) as key-factors is provided. Features, dependencies and coordination among them are discussed in a sustainability-based perspective, by showing how the main challenges for RMRSs’ design concern applicability, redundancy, and users’ emergency support. Safety/security management strategies have the overall highest sustainability level and play a pivotal role with respect to the other BE composing elements, which should be planned in reference to them. In addition, a human-centred approach (individuals’ interactions with BEs and RMRSs) will also be needed. These results will support efforts to include simulation-oriented approaches into RMRSs selection, effectiveness and feasibility analyses.

1280px-Open_Access_PLoS.svg.png

Main WP of reference

Journal

Year

WP 1 - T1.3 (SUOD - terrorism)

Sustainability (MDPI)

2021

Paper BET_Sustainability_2.JPG

Built Environment Typologies Prone to Risk: A Cluster Analysis of Open Spaces in Italian Cities

Planning for preparedness, in terms of multi-hazard disasters, involves testing the relevant abilities to mitigate damage and build resilience, through the assessment of deterministic disaster scenarios. Among risk-prone assets, open spaces (OSs) play a significant role in the characterization of the built environment (BE) and represent the relevant urban portion on which to develop multi-risk scenarios. The aim of this paper is to elaborate ideal scenarios—namely, Built Environment Typologies (BETs)—for simulation-based risk assessment actions, considering the safety and resilience of BEs in emergency conditions. The investigation is conducted through the GIS data collection of the common characteristics of OSs (i.e., squares), identified through five parameters considered significant in the scientific literature. These data were processed through a non-hierarchical cluster analysis. The results of the cluster analysis identified five groups of OSs, characterized by specificmorphological, functional, and physical characteristics. Combining the outcomes of the cluster analysis with a critical analysis, nine final BETs were identified. The resulting BETs were linked to characteristic risk combinations, according to the analysed parameters. Thus, the multi-risk scenarios identified through the statistical analysis lay the basis for future risk assessments of BEs, based on the peculiar characteristics of Italian towns.

1280px-Open_Access_PLoS.svg.png

Main WP of reference

Journal

Year

WP 3 - T3.2

Sustainability (MDPI)

2021

D1.2.1.JPG

Seismic risk of Open Spaces in Historic Built Environments: A matrix-based approach for emergency management and disaster response

Earthquakes affect the safety of the users hosted in both indoor and outdoor urban built environments, especially in Historic Built Environments (HBEs). Many full HBE-scale risk-assessment methods are defined, while methodologies oriented to local analysis of meso-scale elements, such as Open Spaces (OSs), are still limited. Nevertheless, OSs play a crucial role in the first emergency phases, like in the evacuation process, since they host emergency paths and gathering areas. The seismic risk of an OS mainly depends on the combination of the damage suffered from facing buildings and the exposure, which mainly refers to the quantification of human lives. Damage levels result from the combination of vulnerability and hazard-related issues, while exposure is essentially affected by the number of OS users, whose spatial distribution is strongly time-dependent. Methods to quickly combine these issues are needed, especially in view of the deeper insights for the implementation of risk-reduction strategies (i.e. according to simulation-based approaches). This work offers a novel methodology to quickly perform Seismic Risk Assessment and Management of an OS by correlating damage levels to exposure-related issues. The method is composed of two specific matrices, which are developed according to quick literature-based approaches prone to rapid meso-scale applications in HBEs, also by non-expert technicians. The “damage matrix” links the site hazard to the building vulnerability. The assessed damage levels are combined with the users’ exposure into the “consequences matrix”, to estimate the risk in emergency conditions for the OS users, thus supporting decision-makers in promoting robustness/preparedness strategies.

1280px-Open_Access_PLoS.svg.png

Main WP of reference

Journal

Year

WP 1 - T1.2

International Journal of Disaster Risk Reduction (Elsevier)

2021